Venomous and Underrated: Paralysis Ticks and Undersea Pricks

This post is the second in a two-part series on particularly potent venoms found in organisms not commonly renowned for their chemical fortitude. Part 1, which explored the stings of ants and wasps, can be found here.

The fact that there are a number of hymenopterans (ants, bees, and wasps) that have particularly nasty venom isn’t exactly a shocking revelation; these insects are solidly associated with their aggravation-driven stings and their painful side-effects. The degree to which some of these stings can pack a blow may be not well-appreciated, but the general public consciousness is already quite unhappily familiar with how hymenopterans liberally dispense venoms into any and all soft, unguarded tissues like it’s their goddamn job. However, there are entire groups of animals that are worryingly, intimidatingly venomous that are hardly ever even thought of as being venomous in the first place. Yet, these animals have the same chemical gift that has brought infamy to spiders, snakes, and scorpions the world over…that same Midas touch….that is, if everything King Midas touched was suddenly gripped by unbearable, electric agony and shit all over itself in screaming, fitful anguish until it died.

The first of these are animals most folks hardly think about outside the contexts of disease transmission, things that might make the family dog very unhappy, and Leno-chinned superheros in sky blue spandex. It’s likely that only if you spend substantial time in rural areas during warm weather months does this parasite ever clamber into your overall awareness. Yes, I’m talking of course about the glorious, unflinchingly, universally revered tick.

Continue reading

Advertisements

High Tide: Hallucinogenic Fish

I love to eat fish.

Fish is by-and-large my favorite dietary source of protein, and living in Hawai`i means that I get to indulge in this adoration for finned flesh perhaps more often than I should. In the islands, there are plentiful, fresh fish of a staggering diversity sold and consumed everywhere you turn; firm and buttery a`u (Pacific blue marlin, Makaira nigricans), rich opah (Lampris regius), ubiquitous mahimahi (Coryphaena hippurus) and `ahi (Thunnus), lean and flaky ono (Acanthocybium solandri), and delicate `opakapaka (Pristipomoides filamentosus) are just a few. There’s also uhu, ulua, aku, uku, mamo, manini, akule, palani, awa, ama`ama, u`u, opelu, nenue, kamanu, omaka, hapu`u, `ula`ula koa`e, moi, ukikiki, kahala, kala, umaumalei, wahanui, and moano too. Introduced species? Hawai`i has roi, ta`ape, and to`au. Great, glistening troughs of poke line the deli section of just about every grocery outlet on my island (Safeway, local chains….liquor stores), and upon seeing them, I inevitably have to command my legs to carry me away from a fate involving a plastic container of heaven, chopsticks, and a wallet seven dollars lighter.

There are a number of reasons why avoiding the reduced price special on the limu `ahi at the Liliha Foodland may be a wise decision for just about anyone (temporarily salvaged funds unconsidered). As with any food, there are inherent risks, and fish have a unique repertoire of ways they can make a regretful meal. Perhaps the most readily publicized is the health risk posed by the bioaccumulation of methylmercury in the tissues of a number of fish species typically taken as food by humans. One bite of a particularly metal-saturated swordfish steak isn’t going to promptly send you to tea with Alice and a rabbit, and the accumulation of the poison in humans takes time (and LOTS of contaminated fish consumption). But, there are more acute ways a fish filet can bite back. For one, the fish may be highly endogenously toxic, meaning that the fish embeds poisonous compounds into its own essence, it’s own bodily tissues. Pufferfish are well-known for this approach, and many species have organs loaded with tetrodotoxin (TTX), a naturally-occurring, chemical Angel of Death so potent that it makes cyanide look like fucking ibuprofen. Preparing pufferfish for the passage between human lips takes all the insane, brow-beading, calculated finesse of disarming a bomb, but despite the supreme level of care of highly-trained culinary experts, every so often, people drop dead after ingesting the fish. Really damn dead. There are also the ever-present risks of conventional, bacterial food poisoning and infection with parasites like tapeworms and roundworms, both of which are more likely to occur in the less-than-cooked form of fish (my personal favorite state of fish).

Yes, you potentially need to watch what you eat when it comes to fish, whether you risk the slow march of mercury toxicity or a weekend hovering over the world’s unhappiest toilet. These risks are generally understood and expected.

What isn’t expected from your seafood? That you might get high off of it.

The phenomenon is called “ichthyoallyeinotoxism” or “hallucinogenic fish inebriation”; both are just jargony ways of saying that, somehow, the catch of the day has you hearing colors. Occurrences are uncommon, but there are plenty of baffling records, ancient and modern, of humans coming away from their sea-borne suppers with more to worry about than a bit of lemon wedge-fueled acid reflux. Like how to convince the grumpy, five-headed emu in the corner of the room that you don’t have any millipedes hiding under your fingernails.


“Alright, everybody, time to get weird!”

Continue reading

Armed to the Teeth: Bites from Forgotten Sharks

As the 31-day stretch of August rapidly rushes to completion, and the balmiest days of summer fade into the imminent, cool veil of fall, 2014 also discards one of its temporal landmarks associated with these heat-stricken days. If you think I am referencing something remotely anapestic and evoking chest-fluttering nostalgia of long-forgotten, canicular childhood summers, then think again. Because I am, of course, talking about Shark Week.

Yes, that now-legendary bit of the Discovery Channel’s summer programming line-up, a selachimorph-centered festival that is closing in on three decades running, has now passed us by, ending but two weeks ago. Years ago, Shark Week initially appeared to be driven with the mission statement of Discovery in mind, one rooted in the dissemination of fundamentally educational, science-based material in an entertaining manner. This incarnation of Shark Week was the one I was fortunate enough to grow up with, and this week was a boon to my insatiably science-curious child brain, one that my neurons practically salivated over in Pavlovian form right around the time the last traces of abandoned, burnt out firecrackers left July’s dirt. The gift of science education excellence was instrumental in the development of my eventual fascination (and career trajectory) with biology, and I credit the old-school Discovery Channel’s programming with much of the inspiration and intrigue about the natural world that gilded my early days.

At the age of four, my shark ID skills were solid. However, my artistic skills were still…er….buffering.

So, given the intimate intellectual relationship I have with Shark Week and Discovery, watching what both entities have become in recent years feels like a steel-toed kick to the kidneys. There are a laundry list of offenses, and all of them hit on a single formula; the sacrifice of ethics and scientific accuracy in favor of mythology and adrenal-gland massaging codswallop; a grand invasion of heart-pumping, flash and sparkle nonsense programming based on approximately zero micrograms of actual science, all as an ill-conceived motion to inflate ratings. Some examples of Shark Week contrived falsehoods? Well, there’s this lovely bit of mass hysteria-inducing, publicity-hungry deceit initiated by cries of “oh no! Lake sharks! *wink wink*.” Also, there’s that time Discovery trotted out this steaming, embarrassingly unscientific pile of horseshit. Oh, there’s also that other time they made an entire special up. Or how about how the network can only seem to convince scientists to do Shark Week specials with them if they straight-up con them into doing so?

Others (linked above) have done a splendid job of calling out the network’s recent, fraudulent Shark Week habits, so this post isn’t going to be yet another dart in that already well-pockmarked board, but what I want to address is loosely tied to Shark Week’s newfound adoration of Megalodon (well, specifically an adoration of tricking viewers into believing the very extinct shark is still patrolling the deep…now for two years in a row).

“Megalodon”, or to be more accurate Carcharocles megalodon (or Carcharodon megalodon, it depends on what paleontologist you ask) is a popular beast, and thus is an obvious choice for many an examination by television networks (in mockumentaries or not). The extinct shark species is popular for damn good reason, too. C. megalodon was an animal of such outlandish proportions that it doesn’t seem like it could ever have existed, and yet it did, for more than 26 million years, dying out right around the time our ancestral line first harnessed that hot, orange, light-producing stuff that eats up wood (followed swiftly by the invention of S’mores and crappy ghost stories). This was a shark that, according to the most conservative estimates, exceeded 45 feet in length, and had a pair of cartilaginous bear trap-esque chompers big enough to gulp down a Ford Fiesta without even scratching the paint on its immense, triangular teeth.

And oh yes, those teeth. Those frisbee-sized blades that festooned its jaws in a ragged chain of despair. Those famous teeth, for which the animal is named (megalodon basically means “giant fucking tooth”), combined with a body bigger than a goddamn school bus, have enraptured the imaginations of young and old alike, and contemplation about what it would be like to encounter such a surreal, monstrous animal in the flesh is unavoidable.

But, here’s the deal with ol’ Megs…outside of its status as by far the largest shark that ever lived, and definitely one of the biggest predators to ever exist (getting edged out by the sperm whales alive today)…as far as we can tell, there’s nothing insanely unique about its biology. Granted, one of the most fascinating things about C. megalodon is that we don’t know that much about it. Even the size of the thing is sort of up in the air, seeing as how the scientific community has only fragmentary remains (teeth and a handful of vertebrae; the cartilaginous skeletons of sharks don’t fossilize as readily as bony skeletons, so this dearth of recorded remains is not that unusual) from which to base their calculations; estimations range from the 40s of feet in length to more than 60 feet…which in my book is the difference between “we’re going to need a bigger boat” huge and “I’m going to need a new pair of pants” huge.

Honestly, C. megalodon was cool and all, but it was basically just a Hulked-out version of any large lamniform shark (Lamniformes being the order of sharks to which great whites and makos belong). The animal is more or less like a great white had a run in with Rick Moranis and his growth ray, with maybe some very subtle differences in proportions…and a slightly different taste in prey…like taking on goddamned whales instead of comparatively diminutive sea lions. Yes, C. megalodon was something of a specialized whale killer…a shark exquisitely well-adapted to slaughtering and consuming the most massive animals of all time.

So sure, it’s teeth were heart-stoppingly big, and robust, and belonged in the titanic jaws of a beast of celebrity status….but they were just relatively standard lamniform teeth ratcheted up in size, with some limited modifications for slicing through several hundred cubic feet of whale flesh and bone at a time (increased thickness and bigger, deeper roots). For an animal so well-known for its mouth, it certainly didn’t have the most unique pearly whites among extinct sharks. The diversity of prehistoric sharks, and the diversity their feeding adaptations (which often are very divergent from today’s sharks), are woefully unappreciated, at least in comparison to C. megalodon, which is a remarkable shark due to its size and power…but I can think of a couple examples of long-extinct sharks that have far more interesting things going on at their eating ends.

Continue reading

Boxfish: Little Fish, Big Toxins

The boxfish.

Most of the time, I use this blog to blather on and on ceaselessly about all the things about life on this planet I find inescapably fascinating. While all of my exposition on killer fungi, badass birds, weird plants, or whatever obscure, bizarre, horrific, extinct monstrosity wandered into my search history that week is charming (obviously) and fun and all, I don’t often indulge in not only talking about the things that I think need to be shared, but things that are also very directly related to my scientific, academic interests. But, today I shall pander to myself and the relatively narrow realm that constitutes my research interests in the hope that you, dear reader, can push through the voluminous, insatiable outwards expansion of my own ego and acknowledge that my currently proposed study organism for my PhD research, the proud, doughty boxfish…is pretty goshdarned fucking cool.

While I plan on investigating certain nuances about the genetics and evolution of this special group of fishes, the topic of this post isn’t on the subtleties of things like gene flow between populations and speciation, but instead on an incredible, noxious, chemical adaptation that is unique to the boxfish.

But first…what exactly is a boxfish? Boxfish are small fish (between about 5 and 18 inches long, but most are at the low end of that range) that frequent the shallow areas of the warmer parts of the world’s oceans, like coral reefs and seagrass beds. They spend their lives passively pruning algae and small invertebrates like crustaceans, worms, and sponges off rocks and coral with their tiny, delicate mouths. They, as a group, are united in having a body made conspicuously rigid with hexagonal, bony plates fused together to form a hard, yet light-weight shell that encircles their interior, “real” skeletal framework. This shell (which has recently been used as bionic inspiration for automobile design) often has modestly rounded corners, and makes the animal distinctly rectangular in overall shape…hence the “boxfish” name (many species are also referred to as “trunkfish,” and there a some species with preposterously unintimidating horns called “cowfish“). This is an animal that is too hip not to be square.

So, this full-body shell results in the boxfish having a skeleton that essentially looks like a decapitated skull. Similarly to a skull, there are precious few holes in the cage of bone, and the formidable armor only opens up for the eyes, puckered mouth, fins, and tail to peek out into the water. When desiccated corpses of boxfish wash up on beaches, their remains resemble the forgotten, bleached craniums of ill-fated livestock out of a stereotypical, “harsh” cartoon desert.

Photo taken shortly before a tumbleweed rolled into the frame.

Continue reading

Electric fishes

Electricity.

It’s hard to imagine modern life without the stuff. It heats, cools, and lights up our homes and businesses, reduces the chaos of transportation, and because it powers technologies that allow for communication across vast geographic areas, it is the lifeblood of the Information Age. Over time, we’ve discovered that the utility of electricity is ludicrously diverse; from keeping food cold enough to prolong preservation, to saving lives through defibrillation of the heart, to being a dick to your friends. The fact that I am currently writing this on a laptop computer, and then disseminating the information in it over the medium of the Internet, is an undeniable consequence of humankind’s harnessing of electrical energy.

If you are inclined to think of the control and use of electrical energy as a human “invention”, then prepare to set your anthropocentrism…and perhaps yarns telling of curious, bespectacled statesmen armed with kites and keys…aside. Humans are far behind the curve, by many millions of years, on this front once the rest of the animal kingdom is considered, because just like with light (which I’ve talked about before), many animals can produce their own electricity.The overwhelming majority of these animals are at least partially aquatic, since water is a far better conductor of electricity than air. Of these gifted organisms, the bulk of them are vertebrates, and in particular, among our finned and gilled friends, the fishes. There are some mammalian exceptions, including monotremes (the platypus and echidna) and perhaps a species of dolphin or two, but by and large, it’s fish that have locked down this electricity thing. Volta, Tesla, and Edison were great and all, but the reality is that animals not too distantly related to the flaky goodness in your Gorton’s fishsticks had them solidly beat by eons, evolving a commanding grasp of the power of electricity right into their bodies.

Continue reading

Sea Spiders

Sea spiders.

I can already hear the exasperated groans coming from the readership of this entry. Sea spiders? Seriously? Why, arachnophobes the world over sigh, are spiders not content to just stay where they belong; many miles away from any potential interaction with my relatively exposed, swimming body? Need they go out of their way to ruin my summer vacation at the beach too? Why do there have to be marine versions of our creepy, spindly-legged friends, especially when we already have sea snakes, saltwater crocodiles, and what are the equivalent of massive “sea wolves” patrolling the briny depths? Perhaps, given the unsettling, lanky body shape of the sea spider, reminiscent of the daddy longlegs clustered in the dark, dusty recesses of our garages, it provides little comfort to say that these animals are not what their common name suggests.

In the same way that “sea cows” are not actually cattle equipped with flippers, and “sea wasps” aren’t really our delightfully sting-happy, land-lubbing acquaintances finding a new home beneath the waves (a nightmarish scenario if there ever was one), sea “spiders” are not simply spiders with water-proof webs and an appetite for calamari. They are something altogether different, belonging the taxonomic class Pycnogonida (meaning “thick knees”, perhaps referring to the shape of the joints in their segmented legs, or a cruel high school nickname for the group). This class is currently allied within the arthropod group known as Chelicerata, which does include arachnids; but, these “sea spiders” are, as previously mentioned, not arachnids themselves. However, even this classification may not provide enough recognition of the pycnogonid’s unique pedigree. There have been some recent studies (from both molecular genetics and evolutionary development angles) that suggest that sea spiders are not nested alongside arachnids at all, but instead are a part of a much older offshoot of the arthropod line…and are potentially the only surviving, highly-derived representatives of some of the first groups of arthropods to evolve (perhaps more closely related to enigmatic, extinct animals from more than half a billion years ago like Anomalocaris). If this is the case, then the pycnogonid lineage is effectively among the oldest animal groups on the planet.

Yes, no matter which classification assignment is correct, these critters occupy a unique branch on the great tree of life, and once someone takes a look at these pycnogonids up close, it becomes abundantly clear that these animals definitely deserve severely distinct classification, and have a tangibly alien quality to them. Seriously, pycnogonids are about as weird as it gets.

Continue reading

Bioluminescence

Bioluminescence.

One of the more intriguing (at least to me), and beautiful quirks about the evolution of life on this planet is the repeated development of bioluminescence across many different lineages. Bioluminescence is simply the ability of a living organism to produce light. If it’s alive and luminescing, boom, you’ve got an example of a complex chemical cascade that allows sacks of meat not so different from ourselves to light up like a goddamned Christmas tree. Essentially, what is happening with bioluminescence is a highly controlled chemical reaction that releases energy in the form of light emission. This can be done by the beastie itself, or by a symbiotic microorganism that has been acquired by a larger creature. It occurs in multiple kingdoms of life, in terrestrial and marine environments. If I so desired, I could ruminate tearfully on how all of Earth’s life is chemically derived from components forged in a star in a Saganesque exposition of cosmic perspective…and how in some small way, bioluminescence is the means by which stardust can light the darkness of the universe once again. But, heavy-hearted sighs and poetic attribution of consciousness to a mechanically elegant and indifferent universe are for another day, and if done in all seriousness, for another person.

The thing about bioluminescence is that often our understanding of it is limited to a few well-known examples, and without any sort of context, biological or otherwise, other than ‘that is pretty; I like it.’ And while yes, indeed, fireflies and deep-sea fish do have a magical and/or alien quality to them, there is a whole world of bioluminescing organisms that go unloved and underappreciated and denied all the badass reasons for and applications of their abilities. Bioluminescence has evolved many times, and therefore, each example tends to have its own unique story.

Continue reading